#1: Prepare the boat

Before launching or leaving dock:
- **Good sails** → easier to trim right
 - Bad sails → hard to trim & inefficient
- **Clean bottom**
- **Rig in tune** (specs from class association, manufacturer, sail-maker)

#2: Trim the Boat

- **Fore-and-aft**
 - Weight out of the ends
 - Centered over keel/c'board
- **Side-to-side**
 - Optimum heel angle (10°-12°)
 - Some boats like more or less heel.
- **Neutral rudder** (don’t use as brake)
- **Tests:**
 - Look at wake. Big stern wake = too much wt. aft
 - Tiller feel: 5° weather helm
- **Sail trim is ineffective with bad boat trim.**

#3: Trim the Sails

- That’s what we’ll talk about now.

Sail Parts

Good stuff happens when they work together.
Everyone knows

- Sails use wind to propel sailboats
- Sails’ driving force/power, is called “lift”.
 - Lift good, makes boat go.
- Sails also have “drag”.
 - Drag bad, slows boat.
- Force needed to accelerate & (due to drag) to maintain speed.

Less recognized

- Boats sail in their apparent wind, not true wind.
- Air is a fluid; same physics apply as for water.
- No Lift without Drag; more Lift — more Drag
 - Two kinds of Drag
 - Parasitic — air “friction”; increases exponentially with wind speed
 - Induced — byproduct of lift, increases with lift
- Want high L/D Ratios: more drive, less drag.
- Front 25% of sail’s lee side does most of “good stuff”
- Sails take energy from wind; convert to boat speed

Sails are Wings

Wings depend on

Air Flow

No flow = no work

Types of Flow

Air Flow

Three kinds of air flow over sails:

1. **Laminar attached** is ideal
 - The longer flow stays attached the better
 - Hard to achieve or keep
2. **Turbulent detached** is worst
 - Much drag, little lift
3. **Turbulent attached** a compromise
 - Easier to achieve, keep than laminar

Lee side of the sail does the most work and where flow detaches most easily.
Rule

- You can’t **force** flow to obey.
- It follows its own whims.
- You can only **coax** it to stay laminar & attached.

Sail Trim Guides

Telltales indicate flow
- Streaming aft: good
- Lifting: verge of stall
- Hanging: stalled
- Forward: reverse flow

Draft stripes help show sail shape

Trim Toward the Telltale: Any telltale not streaming is telling you to move that part of the sail toward it.

See the Flow, be the Flow

- Use **draft stripes** to see shape
- **Telltale**s to see flow
- **Picture** how the wind flowing over sail
- Where flow detaches, move that part toward the wind.

Radical Idea!

Sails work best as **Energy Converters**

- Take energy from wind; convert to boat speed.
 - $E_w \rightarrow v_b$

Boring Physics Stuff

- More Physics Stuff
 - $F_a = -F_b$ (For every action, there is an equal & opposite reaction.)
 - $F = ma$ (Force = mass * acceleration)
 - also $a = m/F$
 - $V = at$ (Velocity = acceleration * time)
 - $V = (m/F) \times t = mt/F$
 - $E_k = mv^2/2$ (Energy = mass * velocity2/2)
 - $v^2 = 2E/m, v = \sqrt{(2E/m)}$
 - $Fs = mv^2/2$ (Force x displacement = Energy)
 - $\Sigma E = 0$ (Energy is conserved; just changes form.)
 - $P = E/t = mv^2/2t$ (Power = Energy/time)

Now added back on request

Skip it if you want
Three Models

Three ways to look at how a boat sails:

• **Forces**
• **Motion**, momentum, etc.
• **Energy**, Power, Work

Each useful for different aspects

<table>
<thead>
<tr>
<th>Measurement Units</th>
<th>Vector Quantities</th>
</tr>
</thead>
<tbody>
<tr>
<td>English:</td>
<td>Basic physics concept</td>
</tr>
<tr>
<td>• Force: Pounds-force (lbf) = 32 lb. weight</td>
<td>To add, go head-to-tail; result is tail-to-head</td>
</tr>
<tr>
<td>• Distance: Feet (ft), Nautical miles (nmi)</td>
<td></td>
</tr>
<tr>
<td>• Speed: Feet per second (fps), Knots (kn)</td>
<td>• Combine magnitude and direction</td>
</tr>
<tr>
<td>• Kinetic Energy: Foot-pounds per second (fps)</td>
<td>• Can be added and subtracted</td>
</tr>
<tr>
<td>• Power: Foot-pounds/sec (fp/s), Horsepower (hp)</td>
<td>• Used to solve physics problems</td>
</tr>
<tr>
<td>International:</td>
<td></td>
</tr>
<tr>
<td>• Force: Newton (N) = 0.22 lbf</td>
<td></td>
</tr>
<tr>
<td>• Distance: Kilometers (km) = 0.54 nmi</td>
<td></td>
</tr>
<tr>
<td>• Speed: kilometers per second (kms) = 0.54 kn</td>
<td></td>
</tr>
<tr>
<td>• Kinetic Energy: Joule (J) =</td>
<td></td>
</tr>
<tr>
<td>• Power: Watts (w) = 0.74 fp/s) = 0.0013 hp</td>
<td></td>
</tr>
</tbody>
</table>

Vector Math

• To add vectors, place tail of one at head of another.
 – You can do this in a chain of many vectors.
 – Resultant goes from tail of the first to head of the last.
• To subtract a vector, reverse its direction.

Three Models

• Wind pushes/pulls on sails
• Sails push/pull back on wind
• Push/pull of wind translates to push/pull on boat

Momentum Model

• Momentum of wind changed when encounters boat and sails
• Change in momentum transferred to boat
Kinetic Energy Model

Sails take energy from wind by
- **slowing** it &
- **turning** (bending) it

Wind leaves sails with
- Less energy,
- “Lifted” &
- Turbulent

![Kinetic Energy Model Diagram]

Wind Physics

- **Air is a fluid!** (like water)

\[P = \frac{1}{2} \rho A v^3 \]
- \(P \) = power; \(A \) = sail area; \(\rho \) = air density; \(v \) = wind velocity

- Power increases w/ **cube** of wind speed.
 - Velocity is a component of air mass hitting sails.

Basic Wind & Air

What is wind?
- A mass of air in motion
- Motion of the mass gives it energy

What is air?
- A fluid, containing gases:
 - 21% \(O_2 \)
 - 78% \(N_2 \)
 - 0.04% \(CO_2 \)
 - 1% Argon
 - <0.1% other
 - 7% \(H_2O \) (water vapor)
- Each molecule in random motion relative to others in mass

What is air’s mass & weight?
- Air weighs ~ 0.0807 lb/ft\(^3\) @ standard pressure & temperature
- Mass of 1 ft\(^3\) = 0.0025 slugs = 3.59 Newtons
- A slug weighs ~ 32.17 lbs.
- Changes with weather (high pressure vs. low)
- Declines with temp
 - ~3% for every +10°F
- Declines with altitude
 - 5% less @ 5280'
 - 17% less @ 9000'
- Declines with humidity; wetter air less dense

Misconception

Some sailors say “more pressure” to mean higher wind speed. **Wrong!**
- Faster-moving air actually has **less** pressure (Bernoulli’s principle)
- That’s why lee side of sails (faster flow) does more work.

Wind Power

Compared to power in 1 knot of wind speed, \(P_1 \)
- 4 knots = 64*\(P_1 \)
- 8 knots = 512*\(P_1 \)
- 16 knots = 4096*\(P_1 \)

![Wind Power Graph]

Sail Mechanics

- To take energy from wind, sails need optimum flow.
- More **laminar** flow, more energy taken
- Longer **attached** flow, more energy taken
Get out and push?
- A 2400 lb. boat, moving at 4.5 knots has
 - ~6,750 joules of kinetic energy
 - About the same as to raise the boat two feet
- To reach 4.5 knots from 0 in 30 seconds
 - Took an average of ~225 watts of power.
- Required driving force was
 - Effective ~84 lbs. more than drag (air+water)
 - At 59% efficiency, ~142 lbs.

Sail Mechanics
- To take energy from wind, sails need optimum flow.
- More laminar, more taken
- Longer attached, more taken

Sail Efficiency
Measure: Coefficient of Lift, c_L
- Soft (fabric) sails, $c_L \approx 1.5 - 2.0$
- AC72 wings, $c_L \approx 2.0 - 2.5$
- AC72 hard sails $\approx 25\% - 33\%$ more efficient than soft sails.

- **Max efficiency $\approx 59\%$**
 - In "perfect" trim.

Upwash
- Wind bends **before** it meets sails.
- It "anticipates" resistance

Boundary Layer
If you could see flow in minute detail, you’d see that
- Flow is slowest nearest the surface it flows across.
 - At the boundary between surface & fluid, flow is zero; it’s "stuck" to the surface.
 - This is the cause of parasitic drag.
- Flow is faster as it gets further from the boundary layer

Lift vs. Drag
- One sail behaves like airplane wing with flaps.
- Two sails behave like wing with flaps and slats.
Which is faster?

A bag? Or a sail rocket?

Make the physics work for you

Climbing under the hood

To get into the guts of how sails work, see http://syr.stanford.edu/SAILFLOW.HTM

- e.g., "Forces acting on the sail are determined by integrating the pressure distribution over the sail area."

"Physics of Sailing" is a traditionally technical work.

- http://grizzly.colorado.edu/~rmw/files/papers/PhysicsofSailing.pdf

"How do sails work?" by Paul Botajav

"Aerohydrodynamics of Sailing" by C.A. Marchaj; the classic

- [Google](http://www.google.com) is a great resource!

Rig Tune Question

- **Q:** Where can I get a tuning guide for my boat?
- **A:** Try Class association, manufacturer, sail maker or professional rigger
- If none of those work:
 - Mast straight & vertical
 - Set forestay length so yields 5° weather helm upwind.
 - Shorter forestay → less weather helm
 - Longer forestay → more weather helm
 - Set shroud tension so mast vertical & lowers tighter than uppers.
 - Allows tip to fall of & depower in gusts

Draft Stripe Question

Q: Are draft stripes important? How many are needed? Where?

A: Yes, unless you’re highly skilled at reading sail shapes. Draft stripes make it easy to see depth, draft and twist on main & jib.

- I recommend three – at ¼, ½ & ¾ up the sail.
- Don’t follow seams but use same points on luff and leach.

Questions?

rt-sails@comcast.net
Optimum Trim

- **Compromises:**
 - Lift vs. Drag
 - Driving force vs. heeling force
 - Power vs. speed
- **Conditions:** Speed & direction of wind, Water surface (flat, choppy, big waves), Current
- **Requirements:** Where want to go (upwind, downwind, reach), Risk, How fast (ASAP?), Comfort (hiking)

Trim Needs Always Changing

- Requirements change frequently
- Conditions change constantly
- Optimal trim changes second-to-second

Trade-offs

<table>
<thead>
<tr>
<th>Power (for)</th>
<th>Efficiency (for)</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Acceleration</td>
<td>• Speed</td>
</tr>
<tr>
<td>• Waves/chop</td>
<td>• VMG</td>
</tr>
</tbody>
</table>

With:
- • Deep sails
- • Draft forward
- • Minimal twist

With:
- • Flat sails
- • Draft aft
- • More twist

5 Dimensions of Sail Trim

5 Trim Dimensions

1. **Attack Angle**
2. **Depth**
3. **Draft position**
4. **Twist**
5. **Slot & Balance**

The first four apply to all sails. Slot & balance apply to combinations of two or more sails.

#1: Attack Angle

Angle of apparent wind to sail’s chord line

- **Bigger angle**
 - = Tight sheet
 - ↑ lift (to a point)
 - ↑ risk of stall
- **Smaller angle**
 - = Eased Sheet
 - ↓ lift
 - ↓ stall risk
#1a: Attack Angle +
- Bigger angle:
 - Higher L/D (to a point)
 - More stall risk
- Stall is bad; ask pilots:
 - Flow detached & turbulent.
 - Angle = 90° → stall.

When in doubt, ease the sheet out.

#1b: Attack Angle ++
- Dimension changed most often.
- Trim sail to apparent wind – which (if boat moving forward) is forward of true wind.
- Stall bad: Flow detached and turbulent.
 - Attack angle = 90° → stall.

#2: Depth
Ratio of depth to chord length
- Deeper = More
 - Power
 - Drag
 - Stall risk
- Go Deeper = Ease
 - Sheet
 - Outhaul
 - Backstay
- Go Flatter = Tighten (harden up) sheet, outhaul, backstay

#3: Draft Position
Location of max depth fore/aft re: chord length
- Forward =
 - Round entry, straight leech
 - Forgiving, wide groove
 - Less efficient
- Control by cunningham or halyard
 - Tighter for forward
 - Looser for aft
- Draft moves aft with ↑ wind
 - Leach hooks, acts as a brake

Draft aft a problem for old sails

#3a: About Draft
Draft Forward:
- More forgiving,
- Less prone to stalling
 - Wider “groove”
- More lift → more acceleration

Draft Aft:
- More efficient
- More prone to stall
 - Narrower groove
- Less drag → higher speed

> 50% usually bad

#4: Twist
Less attack angle w/ height
- More twist =
 - Less power up top
- Add twist in
 - Heavy wind
 - Very light wind

Twist takes it vertical
#4a: Twist +

Important because

- Apparent Wind high = **stronger & lifted** re: wind low.
- Flow separation **begins at top** of sail and spreads down

#5: Slot & Balance

Slot: Opening between jib/genoa & main
- **Synergy** makes both sails more effective

Balance:
- Jib pulls bow down
- Main pulls stern down, bow up

Sail trim is about:

1. **Attack Angle**
2. **Depth**
3. **Draft position**
4. **Twist**
5. **Slot & balance**

See the sails in all their dimensions.

Questions?

rt-sails@comcast.net

Twist Question

- **Q:** Why is wind stronger aloft than on surface?
- **A:** Because there’s less resistance up there. When wind blows across any surface, it feels skin friction drag. highest near the boundary layer. See https://en.wikipedia.org/wiki/Skin_friction_drag.
- This effect is more noticeable in light air.

Mainsail Question

- **Q:** What about square-headed mains?
- **A:** With more area up top, maybe add a bit more twist in higher winds.
Sail Controls

What the strings do & how they optimize trim
(Soft sails only; hard sails have more)

Sail Trim Controls

- **Mainsail** (6)
 1. Mainsheet
 2. Traveler
 3. Outhaul
 4. Cunningham, Downhaul, Halyard
 5. Boom Vang
 6. Backstay, mast ram, etc.

- **Jib/Genoa** (4-5)
 1. Jib sheet
 2. Jib sheet leads
 3. Cunningham/Halyard
 4. Backstay
 5. Barber-hauler? (Lead inboard/outboard)

- **Spinnaker** (3-4)
 1. Sheet
 2. Twing, tweaker?
 3. Pole height
 4. Pole angle (fore/aft)

Mainsail Controls

- **Mainsheet** affects
 - Attack angle
 - In = ↑ attack angle
 - Out = ↓ attack angle
 - Depth
 - In = ↓ depth
 - Out = ↑ depth
 - Twist
 - In = ↓ twist
 - Out = ↑ twist
 - Slot
 - In = opens slot
 - Out = closes slot

- **Traveler** affects
 - Attack angle
 - Up = ↑ attack angle
 - Down = ↓ attack angle
 - Slot
 - Up = Open
 - Down = Closed

Mainsail Controls +

- **Outhaul** affects
 - Depth (lower 1/3)
 - Aft = ↓ depth
 - Fwd = ↑ depth

- **Cunningham** affects
 - Draft position
 - Tight = Draft fwd
 - Loose = Draft aft

Boom vang affects

- Depth
 - Tight = ↓ depth
 - Loose = ↑ depth

- Twist
 - Tight = ↓ twist
 - Loose = ↑ twist

Backstay

1. When tightened, bends mast; depth pulled out of mainsail.
 - Leach opens & twist increases because head gets closer to clew.

2. Tightens forestay; depth pulled out of jib.

Other boats may have different ways to get the same effects.

Mainsheet affects 4 factors, not all how you’d want.

- Pulls boom **down** as well as in & lets boom **rise** as it goes out.
- Say, you ease the sheet in a puff:
 - Attack angle ↓ & Twist ↑ (good) but
 - Depth ↑ & Slot closed (bad)
- Other controls (backstay, traveler) trim for puff with fewer bad effects

Black is backstay “off”; red is backstay on.
Traveler & Vang

Traveler
- **Keelboat:** Adjusts attack angle
- **Dinghy:** Adjusts angle, depth, twist

Vang
- Adjusts **depth** & **twist**
- Limits boom lift

Cunningham & Outhaul

Cunningham
- Adjusts draft position
- Tighter pulls draft forward

Outhaul
- Adjusts (lower) **depth**
- Tighter flattens foot

Jib Controls

Jib sheet affects
- **Attack angle**
 - In = ↑ attack angle
 - Out = ↓ attack angle
- **Depth**
 - In = ↓ depth
 - Out = ↑ depth

Sheet lead affects
- **Twist**
 - Fore = ↓ twist
 - Aft = ↑ twist

Cunningham/Halyard
- **Draft position**
 - Tight = Draft forward
 - Loose = Draft aft

Backstay affects
- **Depth** (vertical)
 - Hard = ↓ depth
 - Loose = ↑ depth

Jib Sheet Tension

- **Attack angle**
 - In = ↑ attack angle
 - Out = ↓ attack angle

- **Depth**
 - In = ↓ depth
 - Out = ↑ depth

- **Slot**
 - In = Closes slot
 - Out = Opens slot

Sheet Lead

- **Twist**
 - Fore = ↓ twist
 - Aft = ↑ twist

Forward lead pulls **down** on leach
Jib Halyard/Cunningham

- Halyard pulls up on head; cunningham pulls down on tack.

- **Draft position**
 - **Tighter**: Draft forward
 - **Looser**: Draft aft

A cunningham is easier to adjust than a halyard,

Barber-hauler

Adjusts lead in/outboard & affects

- **Attack angle**
 - In = ↑ angle
 - Out = ↓ angle

- Used for “power reaching”
- Complicated
- Most of our boats don’t have barber- haulers

Questions?

Mainsail Question

Q: What’s the big advantage of playing the traveler in puffy conditions?

A: It allows keeping depth & twist trim the same and don’t have to recheck the sail.
 - Just look at traveler position.

Jib Question

Q: How does sheet lead affect twist?

A: See diagram

- Moving the lead forward **reduces twist** by putting more downward tension on leach.
- Moving the lead aft **increases twist** by putting on less downward tension.

Mainsail Question

Q: What is vang sheeting and why use it?

A: In this technique, the boom vang is set hard for minimum depth. Easing the sheet thus affects only the attack angle.

- Used in puffy air when needed attack angle adjustments exceed the traveler’s limits. See http://www.sailingbreezes.com/sailing_breezes_current/articles/Aug00/dell0800.htm.
- Vang sheeting is also used temporarily (at leeward marks) on boats with long main sheets. The vang gets the main under control until the sheet can be trimmed.
Leach Question

Q: How much should I tighten the leach cord?

A: Just enough to take out flutter; any more hooks the leach and acts as brake.

- Stretched-out sails need leach cords; the leach is no longer a straight line.
- Flutter is bad because it makes turbulence & detaches flow.

Opinion: Leach flutter is a signal that the sail needs re-cutting or replacing.

Spinnaker Trim

On many boats, a spinnaker more than doubles sail area

The Finicky Spinnaker

- Most powerful sail on the boat; makes boat go fast downwind.
- Can be the most troublesome and dangerous. If not treated right, it can hurt you.

- Broach
- Pitchpole

Don't pitchpole! Dangerous!

Limited Control

- Attached to boat at only 3 points:
 - Head, tack & clew
 - All are loose; sail is free to move around.

- No luff attachment.
- Supported only by own lift

Spinnaker Strings

- Spinnaker’s luff isn’t fixed to mast or stay.
- Free to go where flow takes it.

Spin Controls Lists

<table>
<thead>
<tr>
<th>Symmetrical:</th>
<th>Asymmetrical:</th>
</tr>
</thead>
<tbody>
<tr>
<td>1) Pole Height (by topping lift)</td>
<td>1) Tack line, controls height & angle</td>
</tr>
<tr>
<td>2) Pole Angle (by guy)</td>
<td>2) Sheet</td>
</tr>
<tr>
<td>3) Sheet</td>
<td>3) Sheet Twing</td>
</tr>
<tr>
<td>4) Foreguy/Guy Twing</td>
<td>5) Sheet Twing</td>
</tr>
</tbody>
</table>
Spinnaker Flow

Important!

- Flow goes turbulent & detaches before it reaches leach.
- Try to retain as much flow as possible.

Spin Controls

Pole Height affects
- Depth (vertical), shape of luff
 - Up = ↑ depth
 - Down = ↓ depth
- Draft position
 - Up = Draft aft
 - Down = Draft forward

Pole Angle affects
- Angle of attack of luff; best 90° to apparent wind
 - 0° attack angle of sail

Sheet affects
- Depth (horizontal)
- Attack angle

Foreguy/Guy Twing limits
- Pole height; keeps pole from skyning in puff

Sheet Twing affects
- Lead position, twist
- Area exposed; "choke" chute in heavy air

Pole Height

Most critical setting!

Works like cunningham; pulls draft forward

- **Pole too low:**
 - Center of chute to weather of forestay
 - Sail unstable; collapses easily; needs too much sheet tension.
- **Pole too high:**
 - Luffs in top 1/3
 - Sail unstable, rolls
- **Just right:** Center seam vertical, curl in center panel
 - Tack often lower than clew, never above clew.
 - If adjustable mast attachment, keep pole horizontal for max projected area.

With asymmetrics, tack use pendant?

Pole Angle

- **90° to apparent wind**
 - Best attack angle
 - Optimum projected area
 - Never touching forestay; risk to pole & rig
- **Too forward**
 - Lose exposed area
 - Too little attached flow
- **Too aft**
 - Causes over-sheeting
 - Prone to stall
- **Test: Luff is vertical**
 - Luff points toward bow, ease pole forward
 - Luff points to windward, trim pole back

DDW (Dead Down Wind)

- In DDW mode, most of sail is stalled.
- Biggest attack angle possible.
- Flow not attached.
- Spinnaker acts like a bag, not a wing.

Tip: Sail 5° - 10° higher
Sheet Tension

Just right:
- Sail stays full; luff curls occasionally

Too loose:
- Sail collapses

Too tight:
- Sail stalls
- Excess heel
- Risk of broach

Sheet Guide

- Ease & trim constantly
- Ease until curls, then trim slightly
- When overpowered, ease until boat on lines.

Gusts & Lulls

Play the **sheet** constantly.

- **Ease for gusts**
 - Keeps boat on lines
 - Prevents broaching

- **Trim in for lulls**
 - If lull persists, raise pole

Other Strings

Foreguy &/or Guy Twing
- Limits pole height; avoids powering up chute in gust
- Foreguy more effective; twing partly effective

Sheet Twing
- Changes lead position of sheet (like barber-hauler on jib)
- Use in heavy air to choke & stabilize chute (reduce rolling)

Discussion?

J24s, pic from North Sails’ site
Look at center seams & curl locations

Communication

Trimmer/Driver Communication critical:

- When trimmer feels more pull (AKA, “pressure”) on sheet, tell driver so can bear off

- When driver heads up for more speed, tell trimmer so trim can be adjusted.
Heavy Air Running Tip

Pull in twing on sheet to

- **Reduce area** (power)
- **Stabilize chute**
- **Reduce rolling**

Questions?

rt-sails@comcast.net

Running Question

Q: What is the advantage of sailing a bit higher than dead downwind (DDW)?

A: Two advantages:
- Increase apparent wind
- Flow over lee side of sails

- The extra distance sailed for 10° higher vs. DDW is only 1.5%, but speed can be increased 10%-20%.
- The lighter the wind, the higher to sail.

Spinnaker Question

- **Q:** Is it wrong to have the head horizontal?
 - **A:** No. It's more common on masthead rigs because the main isn't blocking flow into the head.

Spinnaker Question

- **Q:** Can wind enter the chute at the leach?
 - **A:** It's a definition thing; the place where the wind enters is called the luff. On a (symmetric) chute, it changes with each jibe.
 - If flow reverses and enters where there's no pole to restrain the chute, it's trouble.

Pole Angle Question

- **Q:** Should pole be parallel to boom?
 - **A:** A starting point, but
 - Mains limited (by shrouds) as to how far out.
 - Sometimes we want the main over-trimmed to direct air into chute.
Backstay Question

Q: Should backstay be off downwind?

A: Yes.
- The mast should be allowed (see picture) to move forward.
- This moves the center of effort forward & helps steering.

Balance Sails

- **Balance** main and jib for straight line speed – low weather helm.
- To bear off, ease main, w/ jib tight.
- To turn up, harden mainsheet.

Sail Balance +

- Balance sail & boat trim for slight windward helm
 - ~ 5° tiller above centerline
 - Gives helm “active feel”
- Too much → boat turns up & auto-tacks
- Too little → boat turns down

Light to Moderate Wind

6-15 knots, Beaufort 2-4

- **Power up to accelerate**
 - Small attack angle
 - Deep sails
 - Draft forward
 - Minimal twist
- **At max speed, trim for efficiency & VMG**
 - Increase attack angle a bit
 - Flatten sails a bit
 - Move draft aft a bit
 - Add a little twist

Heavy Air

- 15-30 knots, Beaufort 5-7, gusty
- Keep boat on her lines, avoid over-heel & auto-tacks
- **Power down**
 - Reduce attack angle (sheet/travel out)
 - Flatten sails
 - Backstay on
 - Vang sheeting?
 - More twist to reduce heel
 - Draft forward
Super-light Air

- <4 knots, Beaufort 0-1
- You want power, but flow not attached enough to generate it.
- Trim as for heavy air
 - Flat sails
 - Draft forward
 - More twist (Wind stronger aloft & lifted)

In doubt? Feel slow?

- Ease
 - Sheet (more depth, less attack angle)
 - Vang (more depth & twist)
 - Outhaul (more depth)
- Tighten
 - Cunningham (draft forward)
- Lower traveler (less attack angle)

Questions?

- Super-light Air
 - <4 knots, Beaufort 0-1
 - You want power, but flow not attached enough to generate it.
 - Trim as for heavy air
 - Flat sails
 - Draft forward
 - More twist (Wind stronger aloft & lifted)

Questions?

- Pitchpole Question
 - Q: What causes and how do you avoid pitchpoling?
 - A: Risk increases with wind and waves. The bow can run under the back of a wave & submerge, lifting the stern.
 - Move weight aft to keep bow up.
 - Take waves at an angle to allow the bow to climb them.

Conditions Question

- Q: Why trim in super-light air the same as for heavy air?
- A: It’s counter-intuitive because, in heavy air, you have too much power and, in super-light, not enough power. But
 - Weak wind needs flat sails to stay attached
 - Weak wind is stronger aloft so needs more twist.

Final Thoughts

- Easy Adjustments
- Reproducible settings
- One adjustment at a time
- Things to avoid
Easy Adjustments

All controls should be easily & quickly adjustable.

- Set up so **handy** for crew responsible. (If too hard, it may not get done.)
- Ensure lines can run freely.

Reproducible Settings

- **Mark lines** for standard (base) settings.
- **Replace guessing:** when marks line up, you’re in the ballpark.
- **Adjust** from marks for conditions and requirements.

One Adjustment at a Time

1. **Patience:** Allow time to take effect
 - How much depends on boat
 - Heavier boat → more time
2. **Gauge effect** before next adjustment
3. Make **next** adjustment (Go thru trim loop.)

Avoid

- **Telltales hanging limp**
 – Sail stalled
- **Telltales streaming forward** (except on run)
 – Reversed flow
- **Leach hooked** to windward
 – Acts as brake
- **Sails in water** (slow)

Conditions Question

- **Q:** Why trim in super-light air the same as for heavy air?

 - **A:** It’s counter-intuitive because, in heavy air, you have too much power and, in super-light, not enough power. But
 - Weak wind needs flat sails to stay attached
 - Weak wind is stronger aloft so needs more twist.

Questions?

rt-sails@comcast.net
Miscellaneous

Conditions

Wind
- **Strength**
 - Speed
 - Super-lite
 - Light
 - Moderate
 - Heavy
 - Gear-breaking
- **Variability**
 - Steady
 - Puffy
- **Direction**
 - Steady, persistent or progressive
 - Rapidly oscillating

Water
- **Surface** (waves)
 - Flat
 - Light chop
 - Heavy chop (steep)
 - Small rollers (<3’)
 - Medium rollers (3-5’)
 - Big rollers (>5’)
- **Current**
 - None
 - Fair
 - Foul

Requirements

- **To weather mark**, close-hauled
 - **Standard** mode, best VMG to windward
 - **Footing** mode, emphasizes speed
 - **Climbing** mode, emphasizes pointing

- **To leeward mark** (run)
 - Best VMG

Chute Controls: Big Boat

- Adds reaching strut + lazy sheets & lazy guys

We don’t see many reaching struts around here; they take too much time for short legs. Their function is to keep the afterguy off the shrouds.

We also don’t see many lazy sheets & lazy guys. They’re needed when forces on loaded lines are too high.

If you get nothing else:

Go with Flow!

Thank you for helping celebrate my 78th birthday